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Two simple feedback control laws for drag reduction are derived by applying a
suboptimal control theory to a turbulent channel flow. These new feedback control
laws require pressure or shear-stress information only at the wall, and when applied
to a turbulent channel flow at Reτ = 110, they result in 16–22% reduction in the
skin-friction drag. More practical control laws requiring only the local distribution of
the wall pressure or one component of the wall shear stress are also derived and are
shown to work equally well.

1. Introduction
Recent studies have shown that near-wall streamwise vortices are responsible

for high skin-friction drag in turbulent boundary layers. Many attempts aiming at
controlling these vortices have been made in order to achieve a skin-friction drag
reduction in turbulent boundary layers. Most of such attempts, however, have been
ad hoc, largely based on physical intuition. The active control by Choi, Moin & Kim
(1994), for example, used blowing and suction at the wall that is equal and opposite
to the wall-normal component of the velocity at y+ = 10, resulting in as much as
25% reduction in their numerical simulation. This approach, however, is impractical
since the required velocity information at y+ = 10 is not normally available. For
any practical implementation a control scheme should be based solely on quantities
measurable at the wall.

A more systematic approach based on an optimal control theory was proposed
by Abergel & Temam (1990). Choi et al. (1993) proposed a ‘suboptimal’ control
procedure, in which the iterations required for a global optimal control were avoided
by seeking an optimal condition over a short time period. The suboptimal control
procedure was successfully applied to control of the Burgers equation. Bewley &
Moin (1994) were the first to apply the suboptimal control procedure to a turbulent
flow and reported about 17% drag reduction. The procedure developed by Bewley
& Moin (1994) still requires velocity information inside the flow in order to solve
the adjoint problem, from which a feedback control input was derived. In spite of
this obvious drawback, however, the fact that a control theory applied to a turbulent
flow resulted in a substantial drag reduction is encouraging, since their control
procedure was derived rigorously from a control theory, in which a pre-determined
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cost functional was minimized. Hill (1993, 1994) derived a control input as a function
of the streamwise wall shear only by modeling the near-wall flow with a spanwise
velocity growing linearly, and normal velocity growing quadratically, with normal
distance from the wall. About 15% drag reduction was obtained from this study.
We, however, derive a simple control scheme by minimizing cost functionals that
are related to the streamwise vortices, which have been found to be responsible for
large local drag in turbulent boundary layers. We also tried to minimize drag directly
by having drag itself in the cost functional, but it was not successful (see § 3). The
objective of this paper is to demonstrate that a wise choice of the cost functional
coupled with a variation of the formulation can lead to a more practical control law.

We present how to choose a cost functional and how to minimize it to yield simple
feedback control laws that require quantities measurable only at the wall. One of
the laws requires spatial information on the wall pressure over the entire wall and
the other requires information, also over the entire wall, on one component of the
wall shear stress. We then derive more practical control schemes that only require
local wall pressure or local surface shear stress information, and show that they work
equally well.

2. Suboptimal procedure
We follow a similar procedure used by Choi et al. (1993) and Bewley & Moin

(1994). The problem under consideration is a turbulent channel flow, for which the
governing equations are the Navier–Stokes and continuity equations with the no-slip
boundary condition:

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
, (2.1)

∂uj

∂xj
= 0, (2.2)

with

ui|w = φ(x, z, t)δi2, (2.3)

where t is the time, x1, x2, x3 are the streamwise, wall-normal, and spanwise directions
respectively, ui are the corresponding velocity components, p is the pressure, and
Re is the Reynolds number, and the control input is the wall-normal velocity at the
wall, φ.

All variables are non-dimensionalized by the wall shear velocity, uτ, and the channel
half-width, δ. We also use interchangeably x, y, z for xi and u, v, w for ui. Periodic
boundary conditions are imposed in the streamwise and spanwise directions. The flow
rate in the streamwise direction is kept constant, and the drag is measured by the
mean pressure gradient necessary to maintain the constant flow rate.

We found that the choice of the cost functional to be minimized is critical in
the performance of the control. Since the streamwise vortices have been known to
be responsible for large drag in turbulent boundary layers, we tried to choose the
cost functional that is directly related to them. This is based on our conjecture that
a suitable manipulation of the streamwise vortices would lead to drag reduction.
We carefully selected two cost functionals based on our observation of a successful
control of Choi et al. (1994). As shown in figure 1, Choi et al.’s (1994) blowing
and suction, which are equal and opposite to the wall-normal velocity component
at y+ = 10, effectively suppress a streamwise vortex by counteracting up-and-down
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Figure 1. Schematic of a pressure field induced by a control based on y+ = 10.
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Figure 2. Correlation between a pressure field of a no-control case and a pressure field modified
by a control based on information at y+ = 10. A line indicating no change of the pressure field is
drawn for guidance.

motion induced by the vortex. This blowing and suction creates locally high pressure
in the near-wall region marked with ‘+’, and low pressure in the region marked with
‘−’ in figure 1. A crucial aspect of the present analysis is the observation that this
blowing and suction increases the pressure gradient in the spanwise direction under
the streamwise vortex near the wall. To demonstrate this behaviour, we examine
computed flow fields. Figure 2 shows a scatter plot between two pressure gradient
fields: ∂p/∂z|0w is the pressure gradient before the control is applied and ∂p/∂z|φw is
the pressure gradient at the same location after the control of Choi et al. (1994)
is applied for one time step. It is apparent that the control increased the pressure
gradient significantly. For the uncontrolled case, Reτ based on the wall-shear velocity
and the channel half-width is about 110. The spectral code of Kim, Moin & Moser
(1987) is used for all the computations presented here. Simulations are carried out
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using 32 × 65 × 32 spectral modes (with dealiasing in the streamwise and spanwise
directions) with the computational domain of 4πδ × 2δ × 4πδ/3, respectively.

The above argument suggests that we should seek blowing and suction that increases
the pressure gradient in the spanwise direction near the wall for a short time period
(i.e. in the suboptimal sense) in order to achieve a similar drag reduction to that
achieved by Choi et al.’s (1994) control. The cost functional J(φ) to be minimized is
then

J(φ) =
`

2A∆t

∫
S

∫ t+∆t

t

φ2 dt dS − 1

2A∆t

∫
S

∫ t+∆t

t

(
∂p

∂z

)2

w

dt dS, (2.4)

where the integrations are over the wall (S) in space and over a short duration in time
∆t, which typically corresponds to the time step used in the numerical computation,
and ` is the relative price of the control since the first term on the right-hand side
represents the cost of the actuation φ. Note that there is a minus sign in front of
the second term since we want to maximize the pressure gradient. It should be noted
that the spanwise pressure gradient at the wall will be eventually reduced when the
strength of the near-wall streamwise vortices is reduced through successful control.
Here, blowing and suction that increase the spanwise pressure gradient for the next
step are sought as a suboptimal control.

To minimize the cost functional, we first define the differential states of the velocity
and pressure, (θi, ρ), using a Fréchet differential (Finlayson 1972),

θi =
Dui(φ)

Dφ φ̃, (2.5)

ρ =
Dp
Dφφ̃, (2.6)

where

Df(φ)

Dφ φ̃ = lim
ε→0

f(φ+ εφ̃)− f(φ)

ε
, (2.7)

φ̃ being an arbitrary perturbation field to φ.
Next, we choose the Crank–Nicolson scheme for the linear terms and a Runge–

Kutta scheme for the nonlinear terms to yield a discretized form of (2.1) and (2.2):

un+1
i − ∆t

2Re

∂2un+1
i

∂xj∂xj
+

∆t

2

∂pn+1

∂xi
+ Rn = 0, (2.8)

∂un+1
j

∂xj
= 0, (2.9)

with

un+1
i |w = φ δi2, (2.10)

where the superscripts n+1 and n denote the time step, and Rn includes the nonlinear
terms and the explicit parts of the pressure gradient and viscous terms. The Fréchet
differential of (2.8)-(2.10) yields the governing equations for the differential states
(θi, ρ),

θn+1
i − ∆t

2Re

∂2θn+1
i

∂xj∂xj
+

∆t

2

∂ρn+1

∂xi
= 0, (2.11)

∂θn+1
j

∂xj
= 0, (2.12)



Suboptimal control of turbulent channel flow 249

with

θn+1
i |w = φ̃ δi2. (2.13)

Note that (DRn/Dφ) φ̃ = 0. Hereinafter, we drop the superscript n+1 and all variables
are understood to be at the (n + 1)th time step. Note that there is no contribution
from the nonlinear terms, thus making the equations linear. Generally, the suboptimal
formulation depends on the time advancement scheme used, as shown here (see also
Choi et al. 1993). Dropping the nonlinear terms may miss important flow dynamics.
However, we found from our numerical tests with the full nonlinear terms included
that the contribution from the nonlinear terms is negligible in our boundary control
with short optimization interval ∆t; it turns out that the conservation of mass due to
the wall actuation dominates the near-wall dynamics.

Under the approximation that 2Re/∆t � k2, where k = (k2
x + k2

z )
1/2, and kx and

kz denote the streamwise and spanwise wavenumbers in the x- and z-directions
respectively†, the above equations have the following solutions in the semi-infinite
domain with periodic conditions in the x- and z-directions (see the Appendix):

θ̂1(y) =
ikx
k

ˆ̃φ
(
exp[−(2Re/∆t)1/2y]− e−ky

)
, (2.14)

θ̂3(y) =
ikz
k

ˆ̃φ
(
exp[−(2Re/∆t)1/2y]− e−ky

)
, (2.15)

θ̂2(y) = ˆ̃φe−ky, (2.16)

ρ̂(y) =
2

k ∆t
ˆ̃φe−ky, (2.17)

where θ̂j , ρ̂, and ˆ̃φ are the Fourier coefficients of θj, ρ, and φ̃ respectively. For the
channel geometry, we originally considered both walls and found that the interaction
between two walls is negligible as long as the typical wavelength (∼ 2π/k) associated
with near-wall structures is much smaller than the channel width.

The Fréchet differential of the cost functional (2.4) becomes

DJ
Dφ φ̃ =

`

A∆t

∫
S

∫ t+∆t

t

φφ̃ dt dS − 1

A∆t

∫
S

∫ t+∆t

t

∂p

∂z

∣∣∣∣
w

∂ρ

∂z

∣∣∣∣
w

dt dS. (2.18)

The Fourier representation of the above equation is

D̂J
Dφ

ˆ̃φ∗ = `φ̂ ˆ̃φ∗ − ∂̂p

∂z

∣∣∣∣∣
w

∂̂ρ
∗

∂z

∣∣∣∣∣
w

, (2.19)

where the hat denotes the Fourier coefficient, and the superscript ∗ denotes the

complex conjugate. From (2.17), ̂∂ρ/∂z∗|w can be expressed in terms of ˆ̃φ∗,

∂̂ρ
∗

∂z

∣∣∣∣∣
w

= − 2ikz
k ∆t

ˆ̃φ∗. (2.20)

Equation (2.19) then reduces to

D̂J
Dφ

ˆ̃φ∗ = `φ̂ ˆ̃φ∗ − 2k2
z

k ∆t
p̂w

ˆ̃φ∗. (2.21)

† It can be shown that 2Re/∆tk2
max ∼ Re1/4 � 1. Here we used u∆t/∆x ∼ O(1) and

kmax ∼ kη ∼ Re3/4, where kη is the wavenumber corresponding to the Kolmogorov length scale.
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Figure 3. Correlation between a spanwise wall-shear stress of a no-control case and a spanwise
wall-shear stress modified by a control based on y+ = 10. A line indicating no change of the
spanwise wall-shear stress field is drawn for guidance.

For an arbitrary ˆ̃φ, equation (2.21) should be satisfied, yielding

D̂J
Dφ = `φ̂− 2k2

z

k∆t
p̂w. (2.22)

From the requirement that the Fréchet differential of the cost functional be minimized,

i.e. DJ/Dφ = 0, the optimum φ̂ then becomes

φ̂ = C
k2
z

k
p̂w, (2.23)

where C is a positive scale factor that determines the cost of the actuation. Equation
(2.23) indicates that the optimum wall actuation is negatively proportional to the sec-
ond spanwise derivative of the wall pressure, with the high-wavenumber components
reduced by 1/k.

Another wall quantity that indicates similar changes of the near-wall dynamics due
to the altered pressure field is the spanwise shear at the wall, ∂w/∂y. Owing to the
added pressure gradient in the spanwise direction below the streamwise vortex, the
spanwise flow near the wall is also induced, thus increasing the spanwise shear stress
at the wall (see figure 1). The scatter plot between the spanwise shear stress at the
wall from two different fields, one of which is from an unperturbed channel and the
other with the control based on y+ = 10, is shown in figure 3. Thus another choice
for the cost functional to be minimized is

J(φ) =
`

2A∆t

∫
S

∫ t+∆t

t

φ2 dt dS − 1

2A∆t

∫
S

∫ t+∆t

t

(
∂w

∂y

)2

w

dt dS . (2.24)
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Figure 4. Correlation between a pressure field of a no-control case and a pressure field modified
by a control based on equation (2.23).

Following the procedure that led to equation (2.23) yields the optimum actuation:

φ̂ = C
ikz
k

∂̂w

∂y

∣∣∣∣∣
w

. (2.25)

Equation (2.25) indicates that the optimum wall actuation should be proportional to
the spanwise derivative of the spanwise shear at the wall, with the high-wavenumber
components reduced by 1/k. Note that the scale factor C in equations (2.23) and
(2.25) is arbitrary. As mentioned before, the suboptimal formulation depends on the
time-advancement scheme used. However, if we used a different implicit scheme, only
the resulting constant C would be different. This does not cause a problem since C
is chosen such that the r.m.s. value of the wall actuation is maintained at a given
value.

In the following simulations, we set the r.m.s. value of φ to be equal to that of the
wall-normal velocity at y+ = 10, which gives the same r.m.s. value of wall actuations
as that of Choi et al. (1994).

3. Results
The above control laws (2.23) and (2.25) are tested in a turbulent channel flow.

The pressure gradient at the wall is monitored to see if the equation (2.23) control
increases the pressure gradient when the control law is applied. It behaves as expected,
as shown in figure 4. The spanwise shear stress at the wall also increases when the
equation (2.25) control is applied (see figure 5). These results also confirm that a
suboptimal procedure without the nonlinear terms does not cause an error for our
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Figure 5. Correlation between a spanwise wall-shear stress of a no-control case and a spanwise
wall-shear stress modified by a control based on equation (2.25).

boundary controls. Since these control laws specifically increase the wall pressure
gradient or spanwise wall-shear stress, correlations between these variables before
and after control are much higher than those corresponding to the control based on
y+ = 10 information. This suggests that the controls based on equations (2.23) and
(2.25) modify the flow in a different manner from the control based on information
at y+ = 10.

Time histories of the mean streamwise wall-shear stress for different control laws
are shown in figures 6 and 7. As control begins, an immediate drop in the shear stress
is observed for all cases. At the same expense (i.e. the same r.m.s. value of φ), the
control based on (2.25), which reduces drag by as much as 22%, is apparently more
effective than that based on (2.23) which reduces drag by 16%. This indicates that
the spanwise wall-shear stress is a better quantity for control input.

The control laws presented above, however, are still impractical to implement, since
they are expressed in terms of the Fourier coefficients (i.e. in wavenumber space),
which require information over the entire spatial domain. Therefore, the inverse
transforms of k2

z /k and ikz/k are sought numerically so that the convolution integral
can be used to express the control laws in physical space. The discrete representation
of each control law then becomes†:

φ(xj, zk) = C
∑
j ′

∑
k′

W
p
j ′k′pw(xj+j ′ , zk+k′) (3.1)

† Since k2
z /k and ikz/k are not periodic in the wavenumber space, a high resolution was used to

obtain Wp
jk and Ww

jk to minimize aliasing error.
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k(= z/∆z)
0 1 2 3 4 5 6

0 1.0000 −0.4427 0.0031 −0.0440 0.0044 −0.0138 0.0032
j(= x/∆x) 1 0.0413 −0.0007 −0.0040 −0.0037 −0.0029 −0.0021 −0.0016

2 −0.0110 0.0057 0.0019 0.0011 0.0002 0.0000 −0.0003

Table 1. The weight distribution of equation (3.1), Wp
jk . The weights are symmetric between j and

−j and k and −k. The weights are normalized by Wp
00. Bold faced weights are used in the calculation

of figure 6. Here, ∆x+ = 40 and ∆z+ = 13 (∆x = 3∆z).

k(= z/∆z)
0 1 2 3 4 5 6

0 0.0000 1.0000 −0.1039 0.2679 −0.0852 0.1419 −0.0671
j(= x/∆x) 1 0.0086 0.0537 0.0503 0.0310 0.0340 0.0148 0.0237

2 0.0001 −0.0104 0.0059 0.0051 0.0100 0.0074 0.0092

Table 2. The weight distribution of equation (3.2), Ww
jk . The weights are symmetric between j and

−j and antisymmetric between k and −k. The weights are normalized by Ww
01. Bold faced weights

are used in the calculation of figure 7. Here, ∆x+ = 40 and ∆z+ = 13 (∆x = 3∆z).

and

φ(xj, zk) = C
∑
j ′

∑
k′

Ww
j ′k′

∂w

∂y

∣∣∣∣
w

(xj+j ′ , zk+k′), (3.2)

respectively. The subscripts, j and k, denote the discretizing indices in the x- and
z-directions respectively. The weights, Wp

jk and Ww
jk , are given in tables 1 and 2. Note

that the weights decay rapidly with distance from the point of interest, suggesting that
the optimum actuation can be obtained by a local weighted average of the pressure or
spanwise shear stress. The results obtained using a 37-point average for the pressure
and an 11-point average for the spanwise shear stress yield about the same drag
reduction as that obtained from full integration using equations (2.23) and (2.25) (see
figures 6 and 7). The weights used in these calculations are bold-faced in tables 1
and 2. It is remarkable that localized information can produce such a significant drag
reduction, especially for the control with the spanwise shear stress.

The weight distribution Ww
jk for j = 0 is very similar to the one found in the

application of neural networks to the same turbulent flow (Lee et al. 1997), in which
only a single strip of the spanwise shear information was used in the network. The
control law of Lee et al.,

φ̂ = C
ikz
|kz|

∂̂w

∂y

∣∣∣∣∣
w

, (3.3)

produces almost the same distribution of blowing and suction as the present
results. Note that blowing and suction from equation (2.25) are nearly the same
as those from equation (3.3) because the near-wall structures have relatively slow
variation in the streamwise direction (the kx = 0 component is dominant). This blow-
ing and suction distribution is also very similar to the one based on y+ = 10 data
(see Lee et al. 1997).

In figure 8, contours of the streamwise vorticity in a cross-flow plane for the control
with equation (2.25) are compared with a no-control case. Significant reduction in
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Figure 6. Mean streamwise wall-shear stress for various control laws based on the wall pressure,
compared to the no-control case: thick solid line, the control law expressed in Fourier space,
equation (2.23); thin solid line, the control law expressed in physical space, equation (3.1) with the
integration radius of 6∆z. ∆t+ ' 0.2.
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Figure 7. Mean streamwise wall-shear stress for various control laws based on the spanwise
wall-shear stress compared to the no-control case: thick solid line, the control law expressed in
Fourier space, equation (2.25); thin solid line, the control law expressed in physical space, equation
(3.2) with 11 points in the spanwise direction only. ∆t+ ' 0.2.

the strength of the streamwise vortices is evident. This again confirms the notion
that a successful manipulation of the near-wall streamwise vortices can lead to drag
reduction. The mean streamwise velocity and root-mean-square velocity near the wall
are shown in figures 9 and 10, respectively, and compared with the no-control case.
The trends are very similar to Choi et al. (1994) and Lee et al. (1997).

Finally, we mention that we tried to find a feedback control scheme minimizing the
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Figure 8. Contours of the streamwise vorticity in a cross-flow plane: (a) no control; (b) control
based on wall-shear stress (equation (2.25)). The contour level increment is the same for both figures.
Negative contours are dashed.
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Figure 9. The mean streamwise velocity normalized by uτ: Thick solid line, control law (2.25);
dashed line, no control. For the controlled case, the velocity is normalized by the controlled uτ.
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Figure 10. The root-mean-square velocity normalized by uτ of the uncontrolled flow: thick solid
line, control law (2.25); dashed line, no control.

following cost functional:

J(φ) =
`

2A∆t

∫
S

∫ t+∆t

t

φ2 dt dS +
1

2A∆t

∫
S

∫ t+∆t

t

(
∂u

∂y

)m
w

dt dS, (3.4)

with m = 1 or 2. This cost functional is the most natural choice since it contains
the quantity directly related to drag. We followed the same procedure to derive the
following control schemes:

φ̂ = 0, (3.5)

for m = 1, and

φ̂ = −C ikx
k

∂̂u

∂y

∣∣∣∣∣
w

, (3.6)

for m = 2. Equation (3.5) obviously does not reduce drag and equation (3.6) increased
drag in our numerical simulations. This failure appears to be due to the neglect of
the nonlinear terms in our formulation, since the numerical solution of the optimum
wall actuations with the full nonlinear terms gave different results (Bewley & Moin
1994). This suggests that even in a short time interval the nonlinear terms should
be included in the suboptimal formulation when drag itself is chosen as the cost
functional. Manipulation of the streamwise vortices by wall actuation, however, can
be accomplished through a linear process as shown in the previous section. It appears
that having a term that is directly related to near-wall streamwise vortices in the cost
functional indirectly includes the nonlinear effect. This is probably related to the fact
that near-wall streamwise vortices are self-sustained by a nonlinear process (Hamilton,
Kim & Waleffe 1995). If the nonlinear terms are included, of course, it is impossible
to derive the feedback control law in closed form without approximation. Hill (1993),
on the other hand, considered the nonlinear term by modelling the near-wall flow
using the Taylor series expansion and presented a feedback control law in closed
form, which resulted in about 15% drag reduction.
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4. Summary
We have obtained two simple feedback control laws for drag reduction by applying

a suboptimal control procedure to a turbulent flow. This was possible since we selected
two cost functionals guided by the successful control based on quantities monitored
at y+ = 10. The present control laws perform very well, resulting in substantial
drag reductions when applied to a turbulent channel flow. More convenient control
schemes requiring only local information were also derived, and were shown to work
equally well. They require quantities measurable only at the surface and thus should
be easier to implement in practice. The present results further substantiate the notion
that a successful manipulation of the near-wall streamwise vortices is the key to
boundary-layer control for drag reduction.
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Appendix. Derivation of the solution (2.14)–(2.17)
Equations for the differential states (θi, ρ), (2.11), (2.12) can be rewritten in terms

of the Fourier coefficients,

θ̂1 −
∆t

2Re

(
d2

dy2
− k2

)
θ̂1 +

ikx∆t

2
ρ̂ = 0, (A 1)

θ̂2 −
∆t

2Re

(
d2

dy2
− k2

)
θ̂2 +

∆t

2

dρ̂

dy
= 0, (A 2)

θ̂3 −
∆t

2Re

(
d2

dy2
− k2

)
θ̂3 +

ikz∆t

2
ρ̂ = 0, (A 3)

ikxθ̂1 + ikzθ̂3 +
dθ̂2

dy
= 0, (A 4)

with

θ̂i(0) = ˆ̃φδi2, θ̂i(∞) = 0, (A 5)

where θ̂i and ρ̂ are defined as follows:

θi =
∑
kx

∑
kz

θ̂i(y)eikxxeikzz , (A 6)

ρ =
∑
kx

∑
kz

ρ̂(y)eikxxeikzz . (A 7)

The operation ikx· (A 1) +d/dy(A 2) +ikz· (A 3) together with equation (A 4) yields

d2ρ̂

dy2
− k2ρ̂ = 0, (A 8)

which has a non-growing solution,

ρ̂ = ρ̂we−ky, (A 9)
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with a wall value, ρ̂w , which will be determined later. Using (A 9), we can find solutions
to equations (A 1), (A 2), (A 3),

θ̂1(y) =
∆t

2
ikxρ̂w

(
exp[−(k2 + 2Re/∆t)1/2y]− e−ky

)
, (A 10)

θ̂3(y) =
∆t

2
ikzρ̂w

(
exp[−(k2 + 2Re/∆t)1/2y]− e−ky

)
, (A 11)

θ̂2(y) =

(
ˆ̃φ− ∆t

2
kρ̂w

)
exp[−(k2 + 2Re/∆t)1/2y] +

∆t

2
kρ̂we−ky. (A 12)

With these, equation (A 4) reduces to(
−
(
k2 +

2Re

∆t

)1/2(
ˆ̃φ− ∆t

2
kρ̂w

)
− ∆t

2
k2ρ̂w

)
exp[−(k2 + 2Re/∆t)1/2y] = 0. (A 13)

Since 2Re/∆t� k2, equation (A 13) yields

ρ̂w =
2

∆t k
ˆ̃φ. (A 14)

With this, equations (A 10), (A 11), (A 12), (A 9) become equations (2.14), (2.15), (2.16),
(2.17), respectively.
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